Oil and Natural Gas Prices and the Future of Alternative Fuels

I love Vivaldi’s Four Seasons, especially the music from the spring. I love the optimistic line from the poem by P.B. Shelley, “if winter comes can spring be far behind.”  The unique cold weather, the Midwest, East Coast and even the South, has been facing this year will soon be over and spring will soon be here. Maybe it will be shorter. Perhaps, as many experts indicate, we will experience a longer summer, because of climate change. But flowers will bloom again; lovers will hold hands without gloves outside, kids will play in the park… and natural gas prices will likely come down to more normal levels than currently reflected.

Last Friday’s natural gas price according to the NY Times was $5.20 per thousand cubic feet. It was “the first time gas had crossed the symbolic $5 threshold in three and half years, although (and this is important) the current price is still roughly a third of the gas price before the 2008 financial crisis and the surge in domestic production since then.”

Why? Most experts lay the blame primarily on the weather and secondarily on low reserves, a slowdown in drilling, and pipeline inadequacies. The major impact so far has been on heating and electricity costs for many American households, particularly low and moderate income households and the shift of some power plants from natural gas back to coal.

I wouldn’t bet more than two McDonald’s sandwiches on where natural gas prices will be in the long term. But I would bet the sandwiches and perhaps a good conversation with a respected, hopefully clairvoyant, natural gas economist-one who has a track record of being reasonably accurate concerning gas prices- that come cherry blossom time in Washington, the price of natural gas will begin to fall relatively slowly and that by early summer, it will hover between 3.75 to 4.25 per thousand cubic feet.

Natural gas prices over the next decade, aided by growing consensus concerning reasonable fracking regulations as reflected in Colorado’s recent regulatory proposals, and EPA’s soon to be announced regulations, should be sufficiently high to reignite modest drilling passions, improvements in infrastructure and increased supplies at costs sufficient to maintain an advantage for natural gas based fuels when compared to oil based fuels at the pump.

The present relatively low price of oil (Bent Crude $107 a barrel; WTI $97.00 a barrel) and its derivative gasoline ($3.30 a gallon) may impact the cost differential between gasoline and natural gas based fuels. But the impact could go both ways. That is, if the price of oil per barrel continues to fall and translate into lower costs for gasoline, the price differences between natural gas based fuels and gasoline would narrow. Conversely, if the price of oil goes lower than $90 a barrel, its present price, it likely will impede future drilling, particularly in high cost, hard to get at environmentally sensitive areas. This fact combine with renewed economic growth in the U.S., Europe and Asia, as well as continued tension in the Middle East and continued speculation could well result in a return to higher gasoline prices.

Clearly, the relationship between the cost of natural gas based fuels (CNG, ethanol and methanol) and gasoline is a critical variable in determining consumer behavior with respect to conversion of existing cars to flex fuel cars and the purchase of new natural gas cars (Based on the national pilot involving 22 states lead by Governor Hickenlooper(D) and Governor Fallin(R), as well as interviews with carmakers, creation of a deep predictable market for CNG fueled vehicles will bring down the price of such cars and give them competitive status with gasoline fueled vehicles).

The odds are that the lower costs of natural gas based fuels will serve as an incentive to buyers and existing owners to use them. That is, assuming problems related to fuel distribution as well as access and misinformation concerning the affect alternative fuels have on engines are resolved by public, non-profit, academic and private sectors. Maybe I will up my bet!

Can the Methanol Revolution Start on Indiegogo?

Indiegogo, the crowd-funding site normally populated by documentary filmmakers may seem like an unlikely place to try to launch the methanol revolution. But Scott Morris is ready to give it a try. shutterstock_154960103

The Alabama native has experience in driving and servicing racing cars, so he knows the role that methanol has played in places such as Indianapolis, where the Indy 500 cars raced on methanol since the 1960s until finally pressured recently to give it up by ethanol producers.

“If racing cars going 200 miles per hour can run on methanol, why can’t ordinary consumer vehicles?” asks the (tk-year-old native of Alabama.  “The government has been shoving various alternative fuels down the public’s throat for some time but it obviously isn’t working,” he says. “We’ve got something here that’s going to be driven by consumer desires and nothing else.”

That “something” is a plan to open methanol stations around his native Montgomery with the promise of a free tuneup that will allow drivers to use methanol without any problems, a warrantee on the converted engine, and a chance to fill up at a methanol pump for a cost of about half the price of a gallon of gasoline.

“Ultimately, our business plan is shaped around the idea – give the consumer what they want,” says Morris. And what they want is a cheaper fuel that’s good for America and not sending dollars overseas to countries that could be funding terrorism.”

What Morris has discovered as a car mechanic and fledging entrepreneur is what a lot of experts also recognize – that there’s a huge market opportunity in turning our abundant natural gas supplies into a liquid fuel that could replace gasoline. All it would take is a little engine adjustment and a little initiative.

“What we’re doing is converting the customer’s car to methanol for free,” says Morris. “Then we give them a warrantee against any damage. [This is opposed to the reluctance of the auto companies, which are saying they will not honor warrantees on cars built before 2001 if they use methanol.]  “Then they can fill up at one of the methanol stations in Birmingham we’re going to open up. But if they can’t find a methanol station, they can still use gasoline.

“To me that’s the free market,” he adds. “Give the customer a choice and see which fuel wins.”

Morris is confident that at a per-mile cost that is 40 percent lower than gasoline, methanol is ready to win the day. But he needs some help in getting started.

“We already have the support of one of the nation’s largest methanol producers,” he says. “They’ve pledged $200,000 but we have to match it with $300,000 of our own money.” That’s where Indiegogo comes in.  Morris has posted under the title, “Kiss Gasoline Goodbye.”

“There is a fuel that costs as much as 40 percent LESS per mile driven and can easily replace gasoline, without requiring you to buy a new car or pay to have yours converted, and can be sold at the gas stations we already have in America,” he tells prospective contributors. “Methanol is that solution. Methanol can be made form almost anything . .. Currently natural gas is the most viable feedstock and will be for many years to come.  But coal is a close second, and we have a LOT of coal. Between natural gas as coal, we have enough to fuel every vehicle in the USA for the next 400 years!”

Unfortunately, Crimson Fuel has a long, long way to go. With 33 days left on its Indiegogo campaign it has still only raised $100. Beyond that it will have to deal with the lack of approval from the Environmental Protection Agency in using methanol in gasoline engines.

In truth, Morris’s campaign is pretty quixotic at this point. But he’s recognized all the advantages of methanol and has a sound business plan. If nothing else, it’s a way of getting out the news. With all its advantages, the methanol revolution is bound to start somewhere. Birmingham, Alabama just might be the place.

Altruism Aside, Is Ethanol A Competitive Alternative Fuel?

I was a bit under the weather this past weekend. I thought it would be a good time to catch up on some reading; something assumedly simple- the relatively recent literature concerning the ability of ethanol, particularly E85, to compete with gasoline and the capacity of consumers to make rational decisions in their choice of alternative fuels.

By Sunday night, apart from watching the Denver Broncos happily beat New England on TV, and the amusing dialogue and extensive media time generated by Seattle’s cornerback, Richard Sherman, concerning his athletic and his academic prowess; I spent about 10 hours reviewing several well cited pieces concerning the price relationship between ethanol and gasoline. I also read the intense, often seemingly less than civil debate in papers authored by two professors at Iowa State (Dermot Hayes and Xiadong Du)  and two at MIT (Christopher Knittel and Aaron Smith) concerning methodology associated with defining the relationship between ethanol and gasoline prices. (The Iowa and MIT faculty vigorously attacked each other, sometimes personally, over mistaken attribution of research funding sources. More important, the Iowa folks generally argued that their data suggested a link between ethanol production and the price of gasoline. They indicated that, as ethanol production increased the price of gasoline decreased relative to the price of crude oil.

The MIT folks poo poo’d their distant colleagues’ findings. They indicated that their empirically based models illustrate only a statistically insignificant set of relationships concerning ethanol, gasoline and crude oil prices. They also opined that the Iowa writers misapplied the crack ratio –the relationship of gasoline to crude oil prices- and did not use or mistakenly used the crack spread ratio (the weighted average of the gasoline and distillate products produced by a barrel of crude oil minus the cost of crude). Put in another way, what the Iowa writers recorded was correlation not causation. (I know the etymology but we need to help the economists among us find a better set of terms than crack spread and crack ratio. For a minute, I thought that the texts described a line up at a police station or FBI statistics about drug use.)

What can we learn from recent literature about the effect of ethanol production and gasoline prices at the pump?

1. Most independent experts, not affiliated with advocacy groups, seem willing to support as fact that increased ethanol use, at times, will lower the price of gasoline or slow the increase in the price of gasoline. But the caveat is “somewhat.” They disagree on how much on either side of zero. The recent conventional wisdom, stimulated by the Iowa study that ethanol has and likely will reduce the wholesale price by $.89 cents to $1.09 per gallon seems wrong. It appears to reflect an overstatement based on analyses and models that do not accommodate the many complex variables affecting price and costs (e.g. costs of refining, rapid changes in the costs of corn, the costs of distribution, the lack of infrastructure, the unanticipated increases or decreases in costs of crude oil based on investor speculation, escalation or de-escalation of tension in Middle East, uncertain federal policy, etc.). If I were a betting person, I would place my bet on Knittel and Smith’s conclusions that, over time, the price impact of ethanol at the pump on gasoline prices is likely marginal at best.

2. However, to be fair, some scholars and practitioners in the energy business believe that if gasoline is blended with a larger proportion of ethanol (e.g. E85), the price of a gallon of fuel could well drop, given the idiosyncrasies of the present market.  If this occurs and the reduction appears to consumers as beneficial, a number of observers think that owners of flex fuel vehicles (new or converted) could be enticed to switch to E85. What they generally don’t know, is the cross over point where alternative fuels like E85 become a viable option to drivers because the prices seem to be a good deal. A smart and astute participant in a recent forum on alternative fuels indicated that “people drive to COSTCO or Wal-Mart to save 5-8 cents a gallon on gasoline. Why wouldn’t they switch to E85 blends, if they reflected similar or indeed larger savings and fuel stations were accessible?”

Maybe they would, maybe they wouldn’t! If the price is low enough, many drivers will likely engage in personal opportunity costing. But what is low enough? Getting gas at Wal-Mart and Costco is different from getting E85. Gas is a familiar product to most drivers. Consumers of E85 will have to surmount doubts over product safety, stimulated, I believe erroneously, by groups such as the AAA. Further, because E85 will get fewer miles per gallon, drivers will probably think about perceived price savings in the context of miles per gallon and extra trips to the fuel station (If they forget to do the personal math, they will be reminded to do so by oil companies).

3. Uncertainty exists concerning how much consumers will pay for ethanol based on personal preferences or commitments to societal well-being, what I call the altruism thing.

As one author put it, “ …the demand for ethanol (E85) as a substitute (E10) is sensitive to relative fuel prices: a  $.10 per gallon increase in ethanol’s price relative to gasoline leads to a 12-16% decrease in quantity of ethanol demanded. Price responses are considerably smaller, however, than they would be if households had identical willingness to pay for ethanol as a gasoline substitute and… results imply that some households are willing to pay a premium for ethanol.”

Why? Maybe to improve the environment, provide support for farmers, to express concern over national security, etc. A recent report from Brazil indicates that some Brazilians are willing to pay more for alternative fuels because of what seem to be altruistic reasons. Before we say hallelujah, I should note that we don’t really know the numbers seeking salvation. They are not your average household but rather as one economist notes they are likely “marginal” households in terms of numbers. Further, several respected survey firms in the U.S. doubt that goals related to the larger community or nation, even if consumers articulate them in their living rooms, will overcome large differences between the price of E85 and gasoline, if they occur.

Similarly, altruism or civic values will not overcome fear of engine damage or the need for relatively long trips to fuel stations to secure alternative fuels. The pews, at least until we know more, probably will remain filled with a proportionately large share of guilty drivers on Saturday or Sunday.

The Fuel Freedom Foundation is involved in three state pilot projects aimed at converting existing cars to flex fuel cars; cars that will permit their owners to use natural gas based fuel such as ethanol and, when it is legal, methanol. Hopefully the pilot projects, combined with strategic federal, state, foundation and private sector supported research, will expand knowledge concerning consumer decisions and variables such as the importance of price differentials, altruism, distance, access, etc.

A study supported by Fuel Freedom Foundation recently completed by the respected independent Resources for the Future optimistically noted that “…we see alternative pathways for bring a lower-cost E85 to the pump. If and when ethanol produced by the newly patented, NG-driven Celanese process becomes available, owners of FFVs could realize substantial cost savings, up to $0.83/gge in 2015. If and when cellulosic ethanol becomes available at projected cost for full-scale productions, owners of FFFs could realize similar cost savings.”

Sleep easy! Good Times are coming for the nation and the consumer.

Can Ethylene Replace Gasoline?

The effort to replace oil-based gasoline in our cars with similar fuels derived from natural gas took a big step forward last week with the announcement that Siluria, a promising start-up, will build a $15-million demonstration plant in Texas

The plant will produce ethylene, the most commonly produced industrial chemical in the world and the feedstock for a whole raft of products in the chemicals and plastics industry. But Siluria, which is not yet a public company, is also planning demonstration plants that will produce gasoline. Initial estimates are that the product could sell at half the price of gasoline derived from oil. If these projections prove to be anywhere close to reality, we could be on a path to a fuel economy that is finally able to cut its dependence on oil.

The idea of producing ethylene from natural gas has been around since the 1980s but achieved little success. Several major oil companies invested millions of dollars in the process but finally gave up on it. Jay Labinger, a Caltech chemist who did much of the initial research, finally wrote a paper in the 1980s warning other researchers that it was a waste of time. He may have given up too soon.

Siluria is a California-based startup that has received much of its funding from Silicon Valley investors who tried to move from computers and the Internet into the energy space over the last decade. So far their success hasn’t been great. In fact Vinod Khosla and other Silicon Valley energy entrepreneurs were the subject of an embarrassing critique on “60 Minutes” only two weeks ago. The Siluria venture, however, may be the gusher that makes up for all the other dry holes.

The 1980s efforts concentrated on heat-activated processes whereby methane is split into carbon and hydrogen and then recombined into the more complex ethylene, which has two double-bonded carbons and four hydrogens. All these efforts proved far too energy-intensive, however, and never became economical.

Siluria has been trying a different approach, seeking catalysts that would facilitate the process at much lower energy levels. Moreover, the company has spurned the more recent approach of trying to design molecules that fit the chemicals just right and gone back to the old shotgun approach where thousands of candidates are tried on a catch-as-catch-can basis.

Defying all expectations, the process seems to have worked. Siluria has come up with a catalyst that it says promotes the breakdown and subsequent reassembly of methane at very low energy levels. It has built pilot plants in San Francisco, Menlo Park and Hayward, California and last week announced plans for building a full-scale demonstration plant in La Porte, Texas in conjunction with Braskem, the largest petrochemical manufacturer in South America. If that isn’t proof that Siluria is on to something, what is

The implications of this development are enormous. Natural gas is two to six times more abundant than oil in the world and is now selling at 1/5th the price for an equivalent amount of energy. The traditional tandem pricing of oil and natural gas prices has now been broken and gas is functioning as a completely different commodity, much cheaper.

The difficulty all along has been that natural gas is hard to put into your gas tank. So far efforts have involved compressing natural gas, which means storing it at 3600 pounds per square inch, or liquefying it, which requires temperatures to be lowered to – 260 degrees F. Neither is very practical and would require a whole new auto engine and delivery infrastructure.

Efforts to convert gas into a liquid have concentrated around methanol, which is the simplest alcohol and has been used to power the Indianapolis 500 racing cars since the 1960s. But methanol is the deadly “wood alcohol” of the Prohibition Era and raises fears about poisoning – although gasoline is poisonous, too. The Environmental Protection Agency has never certified methanol for use in auto engines, although an M85 standard has been permitted in California.

Synthesizing gasoline through Siluria’s ethylene-based pathway could solve all these problems. Ed Dineen, CEO of Siluria, says that the gasoline product could sell at half the price of today’s gasoline. With more natural gas being found all the time – and with $1 billion being flared off uselessly around the world each year – any success in turning natural gas into a readily accessible automobile fuel could have a revolutionary impact on our entire economy.

Is E85 the Solution to the Ethanol Debate?

Professor Bruce Babcock, of the Center for Agriculture and Rural Development at Iowa State University, believes he has a simple solution to the corn ethanol mandate problem – encourage people to fill their tank with fuel that is 85 percent ethanol instead of the current 10 percent.

“There may be a few good reason for cutting back on our consumption of corn ethanol,” says Babcock, who holds the Cargill Endowed Chair for Energy Economics. “But the reason the EPA is giving sure isn’t one of them.”

In case you haven’t been following, the Farm Belt is in an uproar over Environmental Protection Agency’s recent decision to cut back on the ethanol mandate from 14.4 billion gallons to somewhere around 13 billion for 2014. Iowa Senator Chuck Grassley blames “special interests” – meaning the oil companies – while Governor Terry Brandstat has talked darkly about a “war on corn.”

But dissatisfaction with the corn ethanol mandate extends well beyond the oil companies and the refineries. In December a coalition of liberals and conservatives – led by California Democrat Diane Feinstein and Oklahoma Republican Tom Coburn – introduced a bill to do away with the corn mandate altogether. “I strongly support requiring a shift to low-carbon advanced biofuel,” said Feinstein, “but corn ethanol mandate is simply bad policy,” “This misguided policy has cost taxpayers billions of dollars, increased fuel prices and made our food more expensive,” added Coburn.  “The time has come to end it.”

What’s the problem?  Well, the mandate – adopted by Congress in 2007 at the behest of President George Bush, Jr. – has fallen out of sync with the “blend wall” – the theoretical 10 percent mark where ethanol starts harming car engines. The mandate pushed up to 14.2 billion gallons last year while gasoline consumption actually dropped to 135 billion gallons last year from 142 billion gallons in 2007, pushing it way past the 10 percent benchmark.

Faced with this dilemma, refiners were forced to buy “credits” in the form of “renewable identification numbers (RINS),” which give them bookkeeping credit for consuming ethanol. But the pressure on the market pushed the price of RINs from pennies per gallon to $1.40 last August, pushing up the price of gasoline. Hence the rebellion and President Obama’s apparent instructions to the EPA to cool it on the mandate for 2014.

Professor Babcock says this is all a result of the artificial barrier limiting ethanol content to 10 percent. “E85 [a blend that is 85 percent ethanol] is selling all over Iowa at 15 percent less than gasoline,” says Babcock, who is originally from southern California. “That actually makes it a little more expensive than gasoline because you only get 80 percent of the energy.  But last August E85 was selling 25 percent below gasoline and it was a bargain.  The notion that cars can’t tolerate mixes of more than 10 percent ethanol is purely fictional.”

The 10 percent blend wall is based on the premise that putting more ethanol in your tank can harm your engine. Several years ago the auto companies have announced they will not honor warrantees on older cars that use more than 10 percent ethanol. The EPA has approved E15 (15 percent ethanol) for cars built after 2001, even doing elaborate tests to prove it could work, but no one has paid much attention. “The automakers say, `We didn’t build those older cars for E15 and we don’t want them running on E15,’” says Babcock.  “As far as they’re concerned, that’s the end of it.”

Without much fanfare, however, both Ford and GM are now manufacturing close to half their cars for “flex-fuel” – capable of burning any mix of gasoline and ethanol – or even possibly methanol, which has not been tested yet. “There’s a little embossed insignia on the back of the car but it’s easy to miss,” says Babcock.  “There are now 17 million flex-fuel cars on the road, although most people who have them don’t even realize it.”

Adjusting older vehicles to flex-fuel isn’t that difficult, either.  On the oldest models, it involves only replacing a few rubber fuel lines with aluminum, which a good mechanic could do it for less than $200 – if it weren’t illegal.  On newer models it requires only an adjustment to the software.  New flex-fuel cars sell for the exact same price as ordinary gasoline vehicles.  “GM has done a really good job of figuring out flex-fuel technology,” says Babcock.  “All their trucks are now designed for it. Chrysler is coming around as well but the Japanese cars have stayed away from it.  They’re putting all their bets of hybrids, hydrogen and electric vehicles.  They’re not at all interested in biofuels.”

Babcock’s proposal, outlined in a paper released earlier this month, is for the EPA to sanction E85 so it can start selling somewhere else besides Iowa, where ethanol remains popular and corn is aplenty. “It just doesn’t make sense to have all the stations concentrated in the Midwest,” says Babcock. “The real place for these cars should be on the East and West Coasts.”

Who would pay for upgrading all these stations to handle E85?  Babcock’s answer is the oil refineries. “The cost would be about $130,000 per station or 20 cents for each additional gallon they could expect to sell,” he says.  “If the price of RINs becomes too high, the refiners will have to do something.  People call me naïve to think they will spend all that money building new pumps but they’re already done it in several instances. I’m not some wide-eyed academic economist.”

But the refineries do have another option and that is to go to Congress and the President and insist that the mandate be lowered – which is what they’ve just done. And with a rebellion against ethanol brewing in the non-farm states, it isn’t likely the mandate will be reinstated any time soon – at least until the Presidential candidates start trooping to Iowa again.  On the other hand, Babcock’s proposal for approving E85 so that the 17 million flex-fuel cars already on the road can start using it makes perfect sense.

At this point, the “blend wall” may more of a mental barrier than a physical one. Once we break through it, ethanol, methanol and a lot of other things become feasible.

Who Says Cars Have to Fill a Parking Space?

You’ve seen them zipping around city streets or squeezed into some illegal-looking space between a normal car and a fire hydrant.  At first you might have thought they were some kind of joke. Who would drive such a thing?  But the new mini-electrics are catching on and may be on the way to revolutionizing urban driving.

There is now a whole menu of them – the Chevrolet Spark, the MINI E, the Toyota IQ, the Fiat 500. Oddly, many of them are available only in California. That seems like a mismatch because they’re obviously better suited for the densely populated cities of the Northeast than California freeways. But those are the vagaries of state incentives and government mandates.

Most of them have a highly limited range.  125 miles is good and some are as low as 75. (A regular gas-powered vehicle can go 400 miles on a full tank.)  But they’re a niche model, obviously suited for running around town and finding a parking space in the vehicle-choked precincts of places like New York City. They can get up to the equivalent of 125 miles per gallon and with some newer accessories don’t take up to seven hours to recharge. Most important, they are getting down into a price range where they are accessible. Leasing prices are impressive (some of them are only available by lease) and with the incentives that the Golden State is offering, people in California can say they are getting a really good deal.

Here’ a list of some of the contenders:

  • Chevrolet Spark.  Originally produced as the Daewood Matiz by GM’s Korean division, the all-electric Spark went on sale in California and Oregon in 2013.  The car is a 146-inch-long four-door hatchback that sells for $27,000.  With a $7,500 federal tax credit and a $2,500 California rebate, however, it comes in at well below $20,000. The Spark can be leased for $199 a month. With an optional connector, it can be charged up to 80 percent in 20 minutes.
  • Fiat 500e.  An electric version of a car that has been sold in Europe since the 1950s, the 500e went on sale in California last year, selling 645 units. Range is barely 100 miles but it gets the equivalent of 116 mpg. The car is priced at $32,000.  Fiat says it will be available in several more states in 2014.
  • Chrysler’s Smart FortwoThe Smart Fortwo is a model that looks like you could fold it up in your back pocket or park it in your living room. Manufactured in France, it is barely eight feet long. It sells everywhere in the United States. Previously built for gasoline and diesel, the new all-electric model sells for only $12,000 and leases for $99 a month. You’re starting to see them more and more on the streets of New York City.
  • Toyota Scion IQPositioned as a direct competitor to the Fortwo, Toyota’s “city car” sold as a 3-cylinder gasoline engine until the electric version was introduced last year.  Estimated range is only 50 miles with a three-hour recharge, so it’s really limited to city driving. The price is high – $35,000 – and right now it’s only available for fleet purchases and car share programs. The first 30 units were bought by the University of California at Irvine.
  • Mitsubishi i-MIEV EV.  Introduced in Japan in 2008 and soon sold almost everywhere but in the United States, the “i” version was finally brought to these shores in 2011, a slightly larger version with some additional features.  The American version has a range of only 62 miles but was ranked by the EPA as the most fuel-efficient car in America until surpassed by the Honda Fit EV in 2012. It sells for $23,000.
  • Honda Fit EVStill only available on a lease basis, the Fit EV goes for $259 a month. Introduced only in California and Oregon in 2011, it is now available in New York, New Jersey, Maryland, Massachusetts, Connecticut and Rhode Island as well. The car only has an 80-mile range but is highly fuel efficient.

Getting people to accept the proposition of driving around city streets in something that looks like it could be sold on the floor of FAO Schwarz, of course, is an entirely different matter. In test driving a city car for The New York Times, Jim Motavalli reports a neighbor commenting, “It’s adorable, but I’m afraid it would be crushed by a Suburban.” The idea of weaving in and out of traffic in what amounts to a tin can is certainly not for everyone. But electric vehicles have lots of torque at the lower end of the spectrum and can be easily maneuvered. Plus if nothing else, they are loaded with safety features.

To anyone familiar with the dense urban streets of Athens or Buenos Aires, city cars would be a familiar sight. And of course the more there are of them, the less dangerous driving becomes. The progress of mini-cars is slow but you’re seeing more and more of them. In the end, they may revolutionize urban driving.