Posts

The Principal Impediment to Alternative Fuels Is – Government Regulation?

In their path-breaking study, “Fuel Choice for American Prosperity,” the Energy Security Council carefully outlines the dilemma that our complete dependence on oil for transportation has created.

“It’s not the oil we import, it’s the price,” was the way they summarized it. As I outlined in a previous post the authors show how OPEC still controls the bulk of the world’s oil reserves and has not increased its output since the 1970s. As a result, even though we have increased domestic production dramatically and cut down on consumption, we are actually paying more for our oil imports than we were ten years ago. Why?  Because, OPEC is still able to manipulate the price to keep it at $100 a barrel. It’s not the black stuff we import that crimps our economy, it’s the price of oil we must accept from a monopolistic cartel.

So what to do?  Do we set up protests outside OPEC’s corporate offices in Vienna?  Do we bring an anti-trust suit in some world forum? People have actually tried such things and gotten nowhere. No, the only way to extricate ourselves from this market is to break the monopoly that oil has on our transportation system. If oil had competitors, it will start acting like any other commodity and respond to supply and demand. The key to breaking the OPEC monopoly, says USESC, is to develop alternative fuels.

When it comes to asking why we have not made more progress in developing alternative fuels, however, USESC has a surprising answer: government regulation. Government regulation? How can that be? I thought the government was doing everything it could to foster alternatives and try to lower our oil imports. Well, as usually happens when the government gets involved in manipulating a market, things quickly get complicated and murky. Here’s what has happened:

CAFE standards. When Congress first started setting corporate fleet average standards, responsibility was given to the Environmental Protection Agency. In retrospect, this was an odd choice, since EPA is more concerned with air pollution than reducing oil consumption. The Department of Energy would have been a more logical choice. This didn’t become visible in the 1980s when pollution concerns centered on the combustion products of sulfur and nitrogen. But now that carbon dioxide and global warming have become the principal concerns, the EPA has subtly changed its emphasis. As USESC points out; “CAFE’s initial energy security centric vision has been blurred by the desire to use the law to promote greenhouse gas emission reduction goals.”

In its latest regulatory effort, for example, the EPA will reward auto companies for introducing alternative fuels by applying a “multiplier” to their corporate fleet average beginning in 2017. Every electric and hydrogen fuel cell vehicles will count as two vehicles in the denominator of the corporate average, phasing down to 1.5 by 2021. For plug-in hybrid electric vehicles (PHEVs) and compressed natural gas vehicles (CNG), the multiplier will be 1.6, phasing down to 1.3.

All this seems fair enough. EVs and FCVs use no gasoline and plug-in hybrids are only partially dependent on oil. The real problem, however, is that flexible-fuel vehicles – cars that are designed to burn ethanol, methanol or gasoline – have only been given credit based on how much E-85 they burn in real-world driving. The auto manufacturers have used this to avoid making improvements in car efficiency. This is regrettable because flexible fuel engines burning either ethanol from homegrown corn or methanol derived from natural gas would be the best say to cut down on imported oil. Both methanol and ethanol are liquids and fit right into our current gas station delivery system. Compressed natural gas and electricity, on the other hand, require a whole new replenishing system. Yet the EPA remains wary of both ethanol and methanol because they produce carbon exhausts. CNG also produces carbon exhausts, of course, and EVs drawing power from coal or natural gas will produce exhausts at the power plant. The EPA has tried to compensate for this by adding upstream carbon releases for EVs and other alternative fuels but it does not do the same for gasoline!  In short, the whole multiplier system is a mess. The EPA would do much better just trying to reduce oil dependence rather than bringing carbon emissions into the equation.

Costs of converting to alternative fuels: One of the most important steps in developing alternative fuels is converting existing gasoline vehicles to run on other fuels.

In general, there are three types of conversions – switching a gasoline or diesel car to run solely on another fuel (dedicated), changing a vehicles to run on higher alcohol blends (flex fuel), or installing an additional fuel tank so that the vehicles can burn the competing fuel as well (bi-fuel). In American, however, onerous regulations and staggering costs of conversion has deterred consumers.

The study points out that installing a CNG tank in an American car costs $10,000 while the same tank in Europe can be installed for $3,800. The difference is the strength of the tank as dictated by the EPA. Of course we don’t want to be in a situation such as Pakistan where CNG cars are exploding due to poor tank quality.  But even in comparison to other developed countries, U.S. regulatory requirements are excessive. 

Taxing by volume instead of by energy content: The federal and state governments places taxes on gasoline and any other product used to propel trucks and automobiles. The logic here is that the money goes into special highway trusts that maintain the roads. But the tax is imposed by the gallon rather than by energy content. USESC maintains that this is discriminatory because methanol, ethanol and other non-gasoline products have less energy density and therefore require more volume for the same amount of energy. This is a fine point and might be disputed by the oil industry, which would say if ethanol and methanol have less energy content, that is simply their tough luck. Ethanol, on the other hand, has been exempted from the federal highway tax and most state gas taxes, which is what makes it economical to add to gasoline.

The ban on methanol: Finally, although the USESC report does not even mention it, the biggest regulatory impediment to alternative fuels is the EPA’s failure to authorize the use of methanol in gas tanks. Putting anything in your gas tank requires permission from the EPA because of air pollution considerations. Although methanol actually produces less nitrous oxides and less particulate matter than gasoline, the EPA has never given it an OK. Although methanol made from natural gas might be the best alternative for replacing gasoline, it is does not yet have EPA approval.

Changing any and all of these regulations would require a huge concerted effort by some constituency that had a strong material interest in pushing it through Congress. Unfortunately, there is no such group. The natural gas industry is not yet organized around the issue and is more concerned about defending fracking and opening up natural gas exports. T. Boone Pickens is pushing CNG for trucks through his Clean Energy Fuels but there is no similar effort to promote the use of natural gas in cars. The entire farm bloc is behind corn ethanol, of course, which is why it has been so successful. But there is no similar interest promoting methanol, which may be just as good an alternative or better.

Under these circumstances, the best alternative is to persuade the auto manufacturers to produce flex-fuel vehicles that can run on any fuel – natural gas, hydrogen, biodiesel, E85 (85% ethanol) or M85 (85% methanol). The adjustment would not add significantly to the price of a new car and would open up the field to all the competitors attempting to replace gasoline.

Let the best fuel win.

If Mother Jones and the Wall Street Journal can agree on this

When Nobel Laureate George Olah wrote his Wall Street Journal op ed recently announcing a new process that can turn coal exhausts into methanol, it reverberated all the way across the political spectrum and into Mother Jones.

 “Can Methanol Save Us All?” says the headline of a story on MJ, written by political blogger Kevin Drum. Although loath to admit he had    been reading the pages of capitalism’s largest broadsheet (he blamed the government shutdown), Drum admitted that he was intrigued. “George Olah and Chris Cox suggest that instead of venting carbon dioxide into the atmosphere, where it causes global warming, we should use it to create methanol,” he wrote.

Olah has been writing about a “methanol economy” for a long time, and he skips over a few issues in this op-ed.  One in particular is cost: it takes electricity to catalyze CO2 and hydrogen into methanol, and it’s not clear how cheap it is to manufacture methanol in places that don’t have abundant, cheap geothermal energy – in other words, most places that aren’t Iceland. There are also some practical issues related to energy density and corrosiveness in existing engines and pipelines. Still, it’s long been an intriguing idea, since in theory it would allow you to use renewable energy like wind or solar to power a facility that creates a liquid fuel that can be used for transportation. You still produce CO2 when you eventually burn that methanol in your car, of course, but the lifecycle production of CO2 would probably b less than it is with conventional fuels.

There are a few things we can cite here to set Drum’s mind at ease. First, methanol made from natural gas is already cost competitive. We don’t have to speculate. There is a sizable industry manufacturing methanol for industrial use from natural gas where it has sold for years at under $1.50 a gallon. That’s a $2.40-per-gallon mileage equivalent for gasoline (before further gains from methanol’s higher octane), making it at least 30 percent cheaper from what you’re now buying at the pump.

Of course Drum is referring here to Olah’s proposal to manufacture methanol by synthesizing hydrogen and carbon exhausts. This would be a more expensive process. But if it ever happened, the utilities would undoubtedly pay the processors to take the carbon dioxide off their hands, since it would allow them to go on operating their coal plants and using all that cheap black stuff coming out of Wyoming and West Virginia. It’s hard right now to factor up the costs but suffice to say, you would not be limited to geothermal from Iceland to make it happen.

As far as the corrosion issues are concerned, Drum can rest assured as well. It is true that methanol corrodes certain elastomers in current engines. They will have to be replaced with o-rings that can be bought at Office Depot for 50 cents. Any mechanic can perform the procedure for less than $200. Modifying current gasoline engines at the factory to burn methanol is also a surpassingly simple procedure – as opposed to altering an engine to burn liquid natural gas, compressed natural gas or hydrogen, which all require an entirely different assembly costing up to an additional $10,000.

The real rub mentioned by Drum, however, is the implication that if methanol can’t be shown to reduce carbon dioxide emissions in the atmosphere, then there isn’t any sense in doing it. There’s a slight divergence of purpose here that isn’t always clear to people who can agree we ought to be looking for alternative fuels to replace gasoline.

For some people the issue is energy dependence and reducing the unconscionable $400 billion we spend every year on imports. As the United States Energy Security Council pointed out in a recent paper, even though we have reduced imports to only 36 percent of consumption, we are still paying the same amount for oil because OPEC functions as an oligopoly and can limit supplies. As the report concluded, “It’s not the black stuff that we import from the Persian Gulf, it’s the price.”

For other people, however, the amount of money we’re spending on foreign oil – and the international vulnerabilities it creates – is not the issue. The only thing that matters to them is how much carbon dioxide we’re putting into the atmosphere. Global warming is such an overriding concern that it supersedes everything else.

This was made clear in a recent article in Yale Environment 360 by John DeCicco, professor at the University of Michigan’s School of Natural Resources and Environment and former senior fellow for automotive strategies at the Environmental Defense Fund, entitled “Why Pushing Alternative Fuels Makes for Bad Public Policy.”

The article argued against all forms of alternatives – ethanol, compressed natural gas, hydrogen and electric vehicles – on the grounds that none of them will do anything to reduce carbon emissions. “In the case of electric vehicles, an upstream focus means cutting CO2 emissions from power plants,” wrote DeCicco.

Without low-carbon power generation, EVs will have little lasting value. Similarly, for biofuels such as ethanol, any potential climate benefit is entirely upstream on land where feedstocks are grown. Biofuels have no benefit downstream, where used as motor fuels, because their tailpipe CO2 emissions differ only trivially from those of gasoline.

Instead, DeCicco argued that environmentally conscious individuals should concentrate on cleaning up power plants while support for alternative fuels should be limited to research and development.

By the time the power sector is clean enough and battery costs fall enough for EVs to cut carbon at a significant scale, self-driving cars and wireless charging will probably render today’s electric vehicle technologies obsolete. Accelerating power sector cleanup is far more important than plugging in the car fleet.

All this short-changes the clear advantages that can come from reducing our huge trade deficit and replacing oil with homegrown natural gas. The less money we spend on imports, the more we will have for making environmental improvements and investing in complex technology such as carbon capture that can reduce carbon emissions.

In addition, DeCicco may be being too pessimistic about alternative fuels’ potential for reducing carbon emissions. As The New York Times reported in a recent story about natural gas cars, “According to the Energy Department’s website, natural gas vehicles have smaller carbon footprints than gasoline or diesel automobiles, even when taking into account the natural gas production process, which releases carbon-rich methane into the atmosphere. Mercedes-Benz says its E200, which can run on either gasoline or natural gas, emits 20 percent less carbon on compressed natural gas than it does on gasoline.” Besides, if the source of emissions can be switched from a million tailpipes to one power plant, it’s a lot easier to apply new technology.

Mother Jones and The Wall Street Journal have much more in common than they may realize. One way or another, it would benefit everyone if we could reduce our dependency on foreign oil.

 

The New York Times and Natural Gas- Is it the Moment?

The venerable Gray Lady, the NY Times, has in the recent past treated the possible use of natural gas and its derivatives (methanol and ethanol) as transportation fuels warily. Their primary focus has seemed to be on the environmental problems and economic opportunities related to fracking and the increased production of natural gas. Rarely did the Times cover or note in its editorials the increasing acceptance of natural gas, methanol and ethanol as a fuel to power vehicles. The importance of alternative fuels as part of national energy and environmental policies has not been granted significant visibility in the Times. The Times is still my favorite read over a cup of coffee.

But, surprise! Borrowing and taking liberty to amend the lyrics from the musical Jekyll and Hyde,   “this may almost be the moment…when The New York Times begins to send many of its doubts and demons concerning alternative transportation fuels on their way… this could be the beginning. The momentum and the moment may be coming together soon in rhyme.”

Paul Stenquist, a respected, frequent writer for the Times automobile section, wrote an Oct. 29 article titled, Natural Gas Waits for its Moment. The content of the piece was, in reality, not as ambiguous or speculative. Read it!  According to Stenquist, natural gas has arrived and this is its moment, or at least its soon-to-be moment. Sure there are problems to overcome, but to Stenquist, they seem relatively puny given where he thinks we are, and where he suggests we can be soon.

Stenquist opens his upbeat piece by indicating that “cars and trucks powered by natural gas make up a significant portion of the vehicle fleet in many parts of the world (Iran, Argentina, Italy, Brazil, and Germany).”  After noting the almost 2,000 natural gas stations in Argentina, he asks, “Is America next?”

Based on Department of Energy (DOE) information, Steinquist indicates that natural gas is about $1.50 cheaper than gasoline and diesel fuels for the same mileage, and that because natural gas burns clean, it requires less oil changes, and vehicle exhaust systems last longer.

Sure, the author notes that the initial cost of natural gas vehicles are significantly higher now than gasoline vehicles. But based on an apparent positive interview with a fleet manager from Ford, he indicates that increased sales or leasing volume could bring the vehicle price comparable to today’s conventional vehicles. The key issue Stenquist does not address, is when this will happen, and how long will it take?  But still he and his Ford colleague seem optimistic– perhaps a bit too optimistic, unless Detroit pulls a Steve Jobs; that is, just as Jobs did with the  iPhone, convince the public through marketing and technological innovation that cheaper cleaner natural gas vehicles are a “must” for consumers.

But wait, there’s more!  Stenquist, quoting from the Energy Department’s website, suggests that the environmental benefits of natural gas as a fuel appear to be immediate and important. Succinctly, natural gas vehicles have a much smaller carbon footprint than gasoline or diesel.

What remains, then, for the nation to benefit in a major way from use of natural gas as an alternative fuel?  Well for one, reducing carbon leakage during natural gas production and distribution. Progress is being made. Stopping or cutting back leakage has become a priority for both involved companies, and federal as well as state regulatory authorities.

Second, both car companies and the government acknowledge that using compressed natural gas in a conventional engine would result in degrading engine performance. However, retrofitting engines to use natural gas would increase the octane advantage of natural gas and lessen the density advantage of gasoline-reducing performance issues. Fully designed natural gas cars are still relatively rare and are, at this moment, significantly more costly than conventional cars. But with increased demand, as noted earlier, the costs would likely come down and make household purchase decisions easier. Interestingly, Governor Hickenlooper of Colorado(D) and Governor Fallin of Oklahoma(R) have put together a 22 state coalition. The group has committed to purchasing new natural gas cars to replace old cars in their respective fleets. Detroit has committed in turn to work on developing a less expensive natural gas car, given the market pool or demand created by the states. This effort deserves watching and will, if successful, hopefully, provide a path to cheaper natural gas vehicles for consumers.

Stenquist, correctly, points to the lack of natural gas fuel stations as a key obstacle to increased popularity of natural gas. But he is optimistic that technology now in place (or soon to be in place) will be able to link available natural gas pipelines to in home fuel machines. I, also, would hope that these fuel stations would be placed in parking garages and that they would be much cheaper than currently existing home refueling equipment.

I suspect that the natural gas movement will require more than a few moments; that is, it may take a bit longer to gain traction than implicit in Stenquist’s piece. But it’s nice to see a journalist link natural gas to transportation fuel in such an aggressive way as Stenquist. Now if the Times could only follow in the content of its editorial and op-ed pages.

It is hard to be critical of Stenquist’s piece since it’s almost a first for the NY Times. However, I am puzzled by the absence of any discussion of natural gas based ethanol and methanol as alternative fuels in his article. Both, likely, would be cheaper per gallon and per miles traveled than gasoline. Both would record more environmental benefits than gasoline, and both, if they are accepted in the market, would reduce dependency on imported oil. Perhaps most significantly, both, assuming appropriate government approvals, could be used almost immediately to fuel existing vehicles with relatively simple and cheap engine conversion kits. Think of it!  If we could add the trifecta: natural gas, ethanol and methanol –to fuel stations throughout America, it would provide needed competition to gasoline. Consumers would benefit by having access to lower cost fuel. The nation would benefit from improved environmental and Greenhouse Gas (GHG) conditions. America’s security and economy would be enhanced significantly. It would be a major win for the public interest and for America and Americans.

If Mother Jones and the Wall Street Journal can agree on this

When Nobel Laureate George Olshutterstock_155499944ah wrote his Wall Street Journal op ed recently announcing a new process that can turn coal exhausts into methanol, it reverberated all the way across the political spectrum and into Mother Jones.

          “Can Methanol Save Us All?” says the headline of a story on MJ, written by political blogger Kevin Drum. Although loath to admit he had    been reading the pages of capitalism’s largest broadsheet (he blamed the government shutdown), Drum admitted that he was intrigued. “George Olah and Chris Cox suggest that instead of venting carbon dioxide into the atmosphere, where it causes global warming, we should use it to create methanol,” he wrote.

Olah has been writing about a “methanol economy” for a long time, and he skips over a few issues in this op-ed.  One in particular is cost: it takes electricity to catalyze CO2 and hydrogen into methanol, and it’s not clear how cheap it is to manufacture methanol in places that don’t have abundant, cheap geothermal energy – in other words, most places that aren’t Iceland. There are also some practical issues related to energy density and corrosiveness in existing engines and pipelines. Still, it’s long been an intriguing idea, since in theory it would allow you to use renewable energy like wind or solar to power a facility that creates a liquid fuel that can be used for transportation. You still produce CO2 when you eventually burn that methanol in your car, of course, but the lifecycle production of CO2 would probably b less than it is with conventional fuels.

There are a few things we can cite here to set Drum’s mind at ease. First, methanol made from natural gas is already cost competitive. We don’t have to speculate. There is a sizable industry manufacturing methanol for industrial use from natural gas where it has sold for years at under $1.50 a gallon. That’s a $2.40-per-gallon mileage equivalent for gasoline (before further gains from methanol’s higher octane), making it at least 30 percent cheaper from what you’re now buying at the pump.

Of course Drum is referring here to Olah’s proposal to manufacture methanol by synthesizing hydrogen and carbon exhausts. This would be a more expensive process. But if it ever happened, the utilities would undoubtedly pay the processors to take the carbon dioxide off their hands, since it would allow them to go on operating their coal plants and using all that cheap black stuff coming out of Wyoming and West Virginia. It’s hard right now to factor up the costs but suffice to say, you would not be limited to geothermal from Iceland to make it happen.

As far as the corrosion issues are concerned, Drum can rest assured as well. It is true that methanol corrodes certain elastomers in current engines. They will have to be replaced with o-rings that can be bought at Office Depot for 50 cents. Any mechanic can perform the procedure for less than $200. Modifying current gasoline engines at the factory to burn methanol is also a surpassingly simple procedure – as opposed to altering an engine to burn liquid natural gas, compressed natural gas or hydrogen, which all require an entirely different assembly costing up to an additional $10,000.

The real rub mentioned by Drum, however, is the implication that if methanol can’t be shown to reduce carbon dioxide emissions in the atmosphere, then there isn’t any sense in doing it. There’s a slight divergence of purpose here that isn’t always clear to people who can agree we ought to be looking for alternative fuels to replace gasoline.

For some people the issue is energy dependence and reducing the unconscionable $400 billion we spend every year on imports. As the United States Energy Security Council pointed out in a recent paper, even though we have reduced imports to only 36 percent of consumption, we are still paying the same amount for oil because OPEC functions as an oligopoly and can limit supplies. As the report concluded, “It’s not the black stuff that we import from the Persian Gulf, it’s the price.”

For other people, however, the amount of money we’re spending on foreign oil – and the international vulnerabilities it creates – is not the issue. The only thing that matters to them is how much carbon dioxide we’re putting into the atmosphere. Global warming is such an overriding concern that it supersedes everything else.

This was made clear in a recent article in Yale Environment 360 by John DeCicco, professor at the University of Michigan’s School of Natural Resources and Environment and former senior fellow for automotive strategies at the Environmental Defense Fund, entitled “Why Pushing Alternative Fuels Makes for Bad Public Policy.”

The article argued against all forms of alternatives – ethanol, compressed natural gas, hydrogen and electric vehicles – on the grounds that none of them will do anything to reduce carbon emissions. “In the case of electric vehicles, an upstream focus means cutting CO2 emissions from power plants,” wrote DeCicco.

Without low-carbon power generation, EVs will have little lasting value. Similarly, for biofuels such as ethanol, any potential climate benefit is entirely upstream on land where feedstocks are grown. Biofuels have no benefit downstream, where used as motor fuels, because their tailpipe CO2 emissions differ only trivially from those of gasoline.

Instead, DeCicco argued that environmentally conscious individuals should concentrate on cleaning up power plants while support for alternative fuels should be limited to research and development.

By the time the power sector is clean enough and battery costs fall enough for EVs to cut carbon at a significant scale, self-driving cars and wireless charging will probably render today’s electric vehicle technologies obsolete. Accelerating power sector cleanup is far more important than plugging in the car fleet

All this short-changes the clear advantages that can come from reducing our huge trade deficit and replacing oil with homegrown natural gas. The less money we spend on imports, the more we will have for making environmental improvements and investing in complex technology such as carbon capture that can reduce carbon emissions.

In addition, DeCicco may be being too pessimistic about alternative fuels’ potential for reducing carbon emissions. As The New York Times reported in a recent story about natural gas cars, “According to the Energy Department’s website, natural gas vehicles have smaller carbon footprints than gasoline or diesel automobiles, even when taking into account the natural gas production process, which releases carbon-rich methane into the atmosphere. Mercedes-Benz says its E200, which can run on either gasoline or natural gas, emits 20 percent less carbon on compressed natural gas than it does on gasoline.” Besides, if the source of emissions can be switched from a million tailpipes to one power plant, it’s a lot easier to apply new technology.

Mother Jones and The Wall Street Journal have much more in common than they may realize. One way or another, it would benefit everyone if we could reduce our dependency on foreign oil.