‘Pump’: Cheaper alternative fuels
[Video] Outlined in the new film “Pump,” Former Shell Oil USA president John Hofmeister, discusses the initiative to reduce the cost of transportation fuel.
[Video] Outlined in the new film “Pump,” Former Shell Oil USA president John Hofmeister, discusses the initiative to reduce the cost of transportation fuel.
The oil debate is something that has raged on in the United States for years. With politicians constantly discussing our dependence on foreign oil, writer Johnny O’Hara and directors Joshua Tickell and Rebecca Harrell Tickell set out to make a film about Americans and their relationship with the oil industry.
I’m looking forward to checking out Pump because believe it or not I think the subject of clean energy and renewable energy is important especially with our gas guzzling cars! Here’s some character posters along with the trailer for the documentary.
American petroleum use accounts for about one-quarter of global consumption, depending upon whose numbers you’re refining. Kicking our oil addiction is an old mantra that is preached daily from the sidelines by an army of expert energy analysts and security insiders. A slick, kinetic new Hollywood movie, PUMP, is breaking out of the wooden oil documentary mold to help power a concerted national effort to get off of oil.
On behalf of Submarine Deluxe, we’re excited to share NEW CONTENT for the upcoming documentary on America’s oil addiction, PUMP, opening in NY & LA this Friday, Sept. 19th!
PUMP is an inspiring, eye-opening documentary that tells the story of America’s addiction to oil, from its corporate conspiracy beginnings to its current monopoly today, and explains clearly and simply how we can end it – and finally win choice at the pump.
PUMP is an inspiring, eye-opening documentary that tells the story of America’s addiction to oil, from its corporate pump 2conspiracy beginnings to its current monopoly today, and explains clearly and simply how we can end it – and finally win choice at the pump.
n Fuel, his 2008 documentary, Joshua Tickell took a first-person stance for renewable energy. Six years later, co-directing with his wife Rebecca Harrell Tickell, he removes himself from the onscreen equation for Pump. Gathering expert testimony and a bright mix of archival material, their film champions gas station alternatives that go way beyond premium and regular.
It seems like a kind of Hollywood fantasy — autonomous little roadsters scooting in and out of traffic, breathlessly avoiding collisions and getting to their destination before anyone else.
Then again, it seems like the inevitable. If computers can perform medical diagnoses, accomplish instant translations for tourists and power Martian rovers, what’s so complicated about driving a car?
The self-driving car has gotten a lot of publicity lately. Google has a demonstration project and there have been the usual speculations about how long before self-drivers become a common sight. Four states have passed legislation allowing their operation and this month self-driving cars received the ultimate accolade of any new technology by being opposed by the Ralph Nader’s Consumer Watchdog, thereby joining fracking, nuclear power, GMO foods and other technological advances as being opposed by the Naderites.
Yet in truth, the idea of self-driving vehicles has been around for a long, long time. Experiments go back as far back as the 1920s. Engineers tried burying electric cables beneath the road to send signals that would keep cars on track. With the development of computers, however, research switched to autonomous vehicles with a dozen auto manufacturers and universities doing serious work.
In 1995, Carnegie Mellon University built an autonomous vehicle that traveled 3,100 miles cross-country for the “No Hands Across America” tour, with only minimal human intervention. In 2005, a Google vehicle equipped with 3D cameras, radar and a software package called Google Chauffeur won a $2 million prize in a Grand Challenge sponsored by the U.S. Department of Defense. In 2010, four self-driving vehicles designed at the University of Parma, Italy duplicated Marco Polo’s expedition by driving from Italy to China with only occasional intervention by their human drivers. Google’s fleet of a dozen self-driving cars has now logged 700,000 miles on public highways without experiencing any trouble. The only accident occurred when one of them was read-ended by another vehicle at a traffic light.
Indeed, as things stand now, the biggest obstacle to widespread adoption may be the predictable human reluctance to have the wheel taken out of their hands. One poll in Germany found that while 22 percent of respondents had a positive attitude toward driverless cars, 44 percent were skeptical and 24 percent were actively hostile toward the idea.
So aside from inspiring a hundred high school science projects and proving that computer geeks can do just about anything, what would be the advantage of self-driving vehicles? Here are a few of the possibilities:
Greater fuel efficiency: Advocates say that the precision achieved by automated vehicles in evening out traffic flows would cut down on national gasoline consumption. Instead of some cars dawdling in the fast lane while others weave in and out, traffic would follow a much more orderly pattern. Estimates are that a large fleet of self-driving vehicles could cut national fuel consumption by as much as 10 percent.
The advance of non-gasoline fuel systems: Since the experiments with trolley-like electronic tracks of the 1920s, self-driving systems have been associated with electric cars. While it will be perfectly possible to mount self-driving equipment on a gasoline-powered car, the “wave of the future” seems to be associated with non-gasoline vehicles. Google’s self-driver runs on electricity as do nearly all other experimental models.
Fewer accidents: Although humans may be reluctant to admit it, the vast majority of accidents are caused by driver error. The 360-degree visibility and unblinking vigilance of self-drivers could be a vast improvement. Many new cars are already beginning to incorporate some of the features with rear-view cameras and automatic braking. The 2014 Mercedes S-class offers options for self-parking, automatic accident avoidance and driver fatigue detection. One website that projects the self-driving future even suggests that the main job losses would be among: 1) hospital emergency room services, 2) auto repair shops and 3) trial lawyers specializing in auto accidents!
Peer-to-peer sharing of traffic information: The end point of self-driving would be a peer-to-peer information-sharing system whereby individual vehicles would be warned of congestion and traffic tie-ups and routed away from them. A 2010 study conducted by the National Highway Traffic Safety Administration projected that an amazing 80 percent of all traffic accidents could be avoided by such a peer-to-peer system that smooth out traffic patterns and prevent cars from bumping into each other on congested highways.
More efficient traffic lights: How much time and gas is wasted by cars waiting for the light to change when no cars are coming in the crossing lane? Computerized systems linked to self-drivers could do wonders to hasten traffic flow and ease the time needlessly spent waiting for red lights.
Driving services for people who cannot drive: Many elderly and handicapped people cannot drive under ordinary circumstances, but could manage a vehicle in which they program it to tell it where they want to go. One of Google’s first early adapters was Steve Mahan, a California resident who is legally blind. This YouTube video shows him running a series of errands through his neighborhood, including a visit to a drive-in taco stand. All this might seem that it would increase driving and add to the nation’s fuel consumption until you consider that many of these people are already serviced by elaborate jitney systems that spend a great deal of time making empty runs. Once again, self-drivers would add precision and efficiency to the system.
Mass public transit — the possibility of a whole new personal mobility system: At the end point of this new technology is the vision of a whole new transportation system where far fewer vehicles would be needed to get people where they want to go. Driving this vision is the statistic that the average car is parked 90 percent of the time. If these vehicles could be put to more efficient use — something along the lines of bike-sharing on city streets — then the need for vehicles might be drastically reduced. Particularly in urban settings, more efficient matching of vehicles and passengers would cut down on the need for street parking. Uber, the San Francisco company that matches passengers with drivers of vehicles for hire, is now operating in 200 cities in 42 countries around the globe. The fuel savings it creates through matching efficiency are phenomenal.
Much of the fruits of these innovations are still in the future, but don’t put it past innovators like Google to make it happen quickly. In 2012 the Nevada Department of Motor Vehicles issued the country’s first license to a Toyota Prius modified with Google technology. Florida and Michigan have also issued permits for road testing. Next January, Google will launch 200 gumdrop-shaped vehicles completely void of steering wheel, brake and gas pedal that will begin cruising the streets of Mountain View, Calif., in an experiment supervised by the California DMV.
The future may be closer than we think.
Recent news concerning the use of corn waste or residual products to create commercially viable ethanol reminds me of a game of checkers. One jump forward, one jump backward, one move sideways. Depending how smart, bored or prone to crying the players are, the game often results in either a stalemate or a glorious victory, particularly glorious when it’s your grandson or granddaughter.
The good news! The American-owned POET and the Dutch-owned Royal DSM opened the first facility in Iowa that produces cellulosic ethanol from corn waste (not your favorite corn on the cob), only the second in the U.S. to commercially produce cellulosic ethanol from agricultural waste, according to James Stafford’s recent article in OilPrice.com (Sept. 5).
The new owners jumped (note the analogy to checkers…my readers are bright) with joy. They announced, perhaps, a bit prematurely, that the joint project, called Project LIBERTY, is the “first step in transforming our economy, our environment and our national security.” After their press release, quick, generally positive, comments came from electric and hydrogen fuel makers, CNG producers, advocates of natural gas-based ethanol and a whole host of other replacement fuel enthusiasts. The comments reflected the high hopes and dreams of leaders of public interest groups, some in the business community, several think tanks and many in the government who see transitional replacement fuels reducing U.S. dependency on oil and simultaneously improving the economy and environment. Several were fuel agnostic as long as increased competition at the pump offered a range of fuels at lower costs to consumers and reduced environmental harm to the nation.
Ethanol from corn waste, if the conversion could be made easily and if it resulted in less costs than gasoline, would mute tension between those who argue that use of corn for ethanol would limit food supplies and provide consumers a good deal, cost wise. The cowboys and the farmers might even eat the same table. (Sorry, Mr. Hammerstein.)
Life is never easy. Generally, when a replacement fuel seems to offer competition to gasoline, the API (American Petroleum Institute — supported by the oil industry) immediately tries to check the advocates of replacement fuel. The association didn’t disappoint. It made a clever jump of its own with a confusing move…sort of a bait and switch move.
API’s check and jump is reflected in their quote to Scientific American. It indicated, in holier-than-thou tones, “API supports the use of advanced biofuels, including cellulosic biofuels, once they are commercially viable and in demand by consumers. But EPA must end mandates for these fuels that don’t even exist.” Wow, how subtle. API supports and then denies!
What a bunch of hokum! Given their back-handed endorsement of advanced biofuels, would API and its supporters among oil companies agree to end their unneeded government tax subsidies simultaneously with EPA’s reductions or ending of mandates? Would API and its supporters agree to add provisions to franchise agreements that would allow gas station owners or managers to locate ethanol from cellulosic biofuels in a central visible pump? Would API work with advocates of replacement fuels to open up the gas market to replacement fuels and competition? Would API agree to a collaborative study of the impact of corn-based residue as the primers of ethanol with supporters of residue derived ethanol, a study including refereed, independent evaluators, and abide by the results? If you answer no to all of these questions, you would be right. API, in effect, is clearly trying to jump supporters of corn-based residual ethanol and block them from producing and marketing their product. Conversely, if you believe the answer is yes to one or more of the questions, you will wait a long time for anything to happen and I will offer to sell you the Golden Gate Bridge and more.
The advocates and producers of cellulosic-based ethanol from corn waste (next move) were suggested by overheard advisors to API. These advisors from the oil industry cheered API’s last move and noted that a recent study in Nature Climate Change, a respected peer-reviewed journal, suggested that biofuels made from corn residue emit 7 percent more greenhouse gases in early years than gasoline and does not meet current energy laws. They wanted checkerboard pieces held by advocates of corn residue off the policy board.
Oh, but the supporters are wise! They don’t give in right away. They pointed to an EPA analysis which indicates that using corn residue to secure ethanol meets existing energy laws and probably produces much, much less carbon than gasoline. Studies like the one reported in Nature Climate Change do not, according to an EPA spokesperson, report on lifecycle changes in an adequate way — from pre-planting, through production, blending, distribution, retailing produce and use. Moreover, a recent analysis funded by DuPont — soon to open a new cellulosic residue to ethanol facility — indicates that using corn residue to produce ethanol will be 100 percent better than gasoline, concerning GHG emissions. (Supporters were a bit hesitant about shouting out DuPont’s involvement in funding the study. It is a chemical company with a mixed environmental record. But after review, supporters indicated it seemed like a decent analysis.)
The response of supporters and its intensity caused API and its advisors to withdraw their insistence, that the checkers of the advocates of corn based residue derived ethanol come of the board. Instead, they asked for a two-hour break in the game. The residue folks were scared. “API was a devious group. What were they up too?”
When the game started again, both supporters and opponents pulled out lots of competing studies, before they made their moves. The only things they agreed on was that the extent of land use devoted to corn, combined with the way farmers manage the soil and the residue, likely would significantly affect GHG emissions. Keeping a strategic amount of residual on the soil would help reduce emissions.
Supporters of corn-based residue argued for a quick collaborative study that might help bridge the analysis gap. But they wanted a bonafide commitment from API that if corn-based residual, derived ethanol, proved better than gasoline, it would support it as a transitional replacement fuel. No soap! The game ended in a stalemate.
Based on talking to experts and surveying much of the literature, I believe that the fictional checkers game tilts toward corn residual derived ethanol, assuming significant attention is granted by farmers to management of the soil and the residue. Whether corn residual-based ethanol becomes competitive as a transitional replacement fuel will be based mostly on farmer intelligence, consumer and political acceptance and a set of even playing field regulations. It, as well as natural gas-based ethanol, as I have written in previous columns, are worthy of a set of demonstration efforts. The nation will have an extended wait until electric and hybrid cars make a big dent regarding the share of the total number of cars in America. We have a moral obligation to do the best we know how to do to lower GHG emissions and other pollutants. We shouldn’t let the almost perfect in our future reduce the possible good now.